칼만필터 유도 - 2. Minimum variance based method
본 포스트의 내용은 Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. 저서에 기반하고 있습니다.
본 포스트의 내용은 Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. 저서에 기반하고 있습니다.
지난 포스트의 4. 결론 부분에서 posterior density는 측정치가 반영된 확률 모델이 가지는 추정치에 대한 likelihood라고 했습니다. 그리고 이 likelihood를 최대화 하는 과정에서 kalman filter가 유도 된다고 했습니다. 이번 시간에는 maximu...
Bayesian filtering에 기반한 이론을 공부하다 보면 조건부 확률 밀도 함수(conditional probability density function, CPDF)와 우도 함수(likelihood function)을 혼용하여 사용하는 경우가 많습니다. 둘은 어떤 차이가 있...
크게 두 가지 이유입니다.
확률적 표현이 필요한 이유?